hmclearn - Fit Statistical Models Using Hamiltonian Monte Carlo
Provide users with a framework to learn the intricacies of
the Hamiltonian Monte Carlo algorithm with hands-on experience
by tuning and fitting their own models. All of the code is
written in R. Theoretical references are listed below:. Neal,
Radford (2011) "Handbook of Markov Chain Monte Carlo" ISBN:
978-1420079418, Betancourt, Michael (2017) "A Conceptual
Introduction to Hamiltonian Monte Carlo" <arXiv:1701.02434>,
Thomas, S., Tu, W. (2020) "Learning Hamiltonian Monte Carlo in
R" <arXiv:2006.16194>, Gelman, A., Carlin, J. B., Stern, H. S.,
Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013) "Bayesian
Data Analysis" ISBN: 978-1439840955, Agresti, Alan (2015)
"Foundations of Linear and Generalized Linear Models ISBN:
978-1118730034, Pinheiro, J., Bates, D. (2006) "Mixed-effects
Models in S and S-Plus" ISBN: 978-1441903174.